多普勒天气雷达图片_多普勒天气雷达产品列表
1.气象台上为什么总顶个“足球”?
2.气象多普勒雷达发展历史是什么?
3.多普勒天气雷达的主要设备
4.气象雷达有哪些类型?
5.中国有x波段雷达吗?性能怎么样?
6.多普勒天气雷达的重要意义
气象台上为什么总顶个“足球”?
本科室友,挺逗一东北人,最近经常强调自己是冰冰的老乡。某次结伴去黄山旅行,登顶俯瞰,一览众山小,好不壮丽。不过山顶最高处并不能登上,因为这里有一座气象站,只有站内人员和受邀人员才能进入。
黄山顶上还有这么个气象站,老气派了!
这个气象站,1956年就有啦,十多年前扩建了一遍,成了现在这个样子
这上头恁大一足球,嘛玩意儿啊?
那不是足球,是雷达
拉倒吧,雷达我见过,跟口锅似的,你看红警里头:
游戏 中选择苏军阵营,建起这座雷达,您将获得右上角的小地图视野和侦察机选项(来自 游戏 《命令与征服:红色警戒2》)
雷达种类可多了,红警里面那就是最常规的一种雷达,画了个模型。这儿的雷达,叫多普勒雷达,里面其实也是像一口锅一样,外面是一种特制的壳子,用来保护天线的。稍微大一点的气象站现在都有这个高 科技 产品
就这足球一样的玩意儿?这么厉害吗?
那是,多普勒雷达可谓功能强大……
哦,那我懂了,应该是更像这玩意儿,指哪劈哪,老霸道了!
天气控制器, 游戏 中盟军阵营的“超级武器”,可以召唤“闪电风暴”对敌军基地带来致命打击(来自 游戏 《命令与征服:红色警戒2》)
这是咱民用的做天气预报用的雷达,不是天气控制器,召唤不了闪电的……
那这“足球”有啥用呢?
用处可大了,且听我慢慢道来
雷达 ,大家或许都有所耳闻。小学的科普书上就会有:人类通过研究蝙蝠捕猎的原理而发明了雷达。
雷达可以发射电磁波或者声波,通过计算发射信号与反射信号等时间差来推测物体位置和大小。雷达可以广泛应用于战争、农业、气象、航空航天等等,是一种很常见的装备。
雷达最为人熟知的形状是一个像大锅一样的东西,正中央一根天线,斜向上仰视天空,一边转一边探测空中有什么飞行物,就像 游戏 中描绘的那样。
但是,雷达前面加上一个“ 多普勒 ”,或许很多人就没有听说过了。同时,人们可以注意到在很多气象站,以及飞机场边上的塔台上有一个神秘的球形或半球形建筑体,细看仿佛一颗足球一般。
四川省气象局、深圳市气象局、浦东机场塔台
(图自image.baidu)
那么,什么叫“多普勒雷达”呢?
这就涉及一个中学时期的物理概念—— 多普勒效应 。
多普勒效应是指当一个相对于某参照物在运动的物体发出与运动方向不垂直的波时,波的波长会相应发生变化的现象。
生活中最常见的多普勒效应就是声音的多普勒效应。当一辆车从你面前呼啸而过,它发出的声音会从高变低,而声音的音调高低与声波的波长相关,音调越高,波长越小,声波的频率越高。
因此,对于与声波传播方向相同的物体,其音调会变高,波长变短;与声波方向相反的运动物体,其音调会变低,波长变长。
多普勒效应(来自维基百科)
了解了多普勒效应,就很容易明白多普勒雷达的探测原理。它本身会不断发射电磁波信号或者声波信号,通过探测物体反弹的电磁波/声波频率,得到一个频率差值,再推演出物体的运动速度。根据不同的发射频率反射的结果,可以推演出物体的运动方向和距离等等。
它与普通雷达的最大区别是需要一直保持开启状态,再利用集成电路和计算机等从物体反射的波频率差异分辨出有效信息。而普通的雷达是通过计算从发射信号到接收反射信号的时间差来推算物体运动信息,得到的信息更加简略。
运用于气象观测的多普勒雷达,发射的通常是微波(一种电磁波,微波炉里面发射的那种波就属于微波),通过多普勒效应计算不同高度层气流的运动速度,可以得到附近区域的风速、水汽等等信息的垂直分布情况。
对于不同的观测对象,气象多普勒雷达的发射频率会有所差异,因为不同物体对电磁波的反射率会随着频率变化。
一般而言,单个雷达的工作频率范围是比较有限的,特定的工作频率只有探测特定大小的粒子时比较准确。比如测云雷达适合探测颗粒较小的云微粒,用来探测中高层的云,测量云底和高度等;而测雨雷达波长更长,频率更低,适合探测颗粒较大的雨滴和低层的雨云,适合跟踪可能产生降水的云团,从而达到实时观测天气的目的,因此又叫天气雷达。
还有一种“甚高频/超高频雷达”,波长短,可以用来探测大气湍流,以及大气层中的带电粒子,适合用来监测闪电等现象。
2017年台风“天鸽”登陆情形,云层越厚重,颜色越红
那么为什么气象台的雷达会是球形的呢?
这个球壳叫做“ 雷达罩 ”。
实际上,多普勒雷达真正核心的部分仍然是一口大锅加天线的形状,与普通雷达没有显著差异。之所以加上一个足球一样的外壳,主要作用还是保护内部的天线,延长使用寿命,因为多普勒雷达需要全天候开启,所以加上雷达罩更加有用。
雷达罩还可以起到一个让信号均匀分布的作用。但与此同时,雷达罩会导致信号衰减,分辨率变差,所以有些分辨率要求较高的雷达不会安装这个罩子。
日本某基地的雷达罩(来自维基百科)
多普勒雷达目前在气象和军事方面应用广泛 ,是极其重要的设施。据行业统计,我国目前有新一代天气雷达270部(2020年估计,基本上都是多普勒雷达),另有X波段雷达(应急保障或重大活动期间使用)、风廓线雷达(截至2016年共有69部,集中于大城市群)等共同组网,形成了覆盖全国的气象观测网络。
参考文献 :
1.天气雷达探测与应用(胡明宝 编著,气象出版社,2007.11)
2.雷达气象学(张培昌等 编著,气象出版社,2005.1)
3.s://en.wikipedia.org/wiki/Weather_radar
4.s://en.wikipedia.org/wiki/Doppler_effect
5.s://zhidao.baidu/question/118723014.html
6.中国网国情问答:气象雷达发展专项规划(2017-2020年)内容是什么?
撰稿:张昱衡
美编:李莹
气象多普勒雷达发展历史是什么?
第二次世界大战前雷达用于军事目的。当时云、雨等气象目标的回波被作为干扰看待。1941年在英国最早使用雷达探测风暴。1942~1943年,美国麻省理工学院专门设计了为气象目的使用的雷达。在气象雷达发展初期,一般都靠手工操作,回波资料只能作定性分析。
20世纪60年代用了多普勒技术,气象多普勒雷达具有对大气流场结构的定量探测能力;常规雷达的数字显示和彩色显示也相继出现。
70年代,除联合使用多部多普勒雷达外,又相继发展了大功率高灵敏度的甚高频和超高频多普勒雷达和具有多普勒性能的高分辨率调频连续波雷达;在雷达结构上,广泛用了集成电路,配备有小型或微型电子计算机,使气象雷达能对探测资料进行实时数字处理和数字化远距离传输;有的天气雷达已能按照预先编好的程序,由电子计算机操纵观测,并逐步向自动化观测网的方向发展。
80年代以后,在多普勒雷达的基础上,科罗拉多州立大学电子工程系的教授提出了偏振气象雷达的思想,为大气雷达探测,已经气象资料分析提供了一个更为先进的平台。偏振多普勒雷达参数为分析雨滴等降水信息分布,以及降雨形状分布提供了更为精确的信息。科罗拉多州立大学的CSU-CHILL雷达也是世界上该领域最为先进的天气雷达,CSU-CHILL是美国国家天气雷达设备,由N提供资金,科罗拉多州立大学负责。
多普勒天气雷达的主要设备
在触发脉冲的触发作用下,调制解调器产生调制脉冲。调制脉冲具有两个特性:
(1)具有固定的脉冲宽度(也称为脉冲持续时间),以微秒为单位,也可以以脉冲的空间距离h表示,脉冲宽度直接影响探测距离和距离分辨能力即雷达盲区大小。探测近目标用窄的脉冲宽度,在探测远目标时,为了增大回波信号的强度用宽的脉冲宽度。天气雷达的脉冲宽度一般取0.1--4微秒,随各种雷达探测目的不同而异。
(2)调制脉冲提供一个合适的波形具有足够的幅度,以便使下一级电路发射机正常工作 在调制脉冲的作用下,发射机产生短促又强大的特高频振荡,经天线向空间发射出去,即探测脉冲。发射机的主要技术参数有波长(或振荡频率F)和脉冲发射功率。
(1)波长:天气雷达通常使用的波长是厘米波,划分为K、X、C和S四个波段,K波段的雷达是用来探测非降水的云,X、C和S波段用于探测降水。
(2)脉冲发射功率:是指天线实际发射的峰值功率,如果忽略了波导管和天线的损耗,则脉冲发射功率将近似地等于发射机输出峰值功率。 (1)波束的宽度:天气雷达的天线具有很强的方向性,它所辐射的功率集中在波束所指的方向上,波束主轴附近能流密度大,波束的边缘能流密度小,能流密度的相对分布曲线,称为天线方向图,曲线上各点与坐标原点的连线长度,代表该方向相对能流密度大小。能流密度最大方向上的波瓣称为主波瓣,侧面和相反方向能流密度均小得多,分别称为旁瓣和尾瓣。在天线方向图上,两个半功率点方向的夹角,称为波束宽度。波束宽度越小,定向角度的分辨率越高,探测精度越高。天气雷达的波束宽度通常不超过2度,多普勒雷达的波束宽度一般不超过1度。波束宽度的大小取决于抛物面反射体的直径和雷达工作波长。
(2)天线增益:在相同辐射功率条件下,在波束方向上定向天线的能流密度与各向均匀辐射的天线的能流密度之比,称为天线增益,以G表示,天线增益与天线波束宽度具有一定的关系。天线增益以分贝(dB)表示:分贝(dB)=10log(定向天线的能流密度)/(各向均匀辐散天线的能流密度)。 接收机:接收来自目标物的回波信号,经过放大后送往显示器进行显示。回波信号常常非常微弱,接收机必须具有接收微弱信号的能力,这种能力称为灵敏度。灵敏度用最小可辨功率表示。它是回波信号刚刚能从噪声信号中分辨出来时的回波功率。
显示器:
(1)平面位置显示器(简称平显或PPI)是天气雷达中最常用的一种显示器。在这种显示器上,电子束一方面以脉冲重复频率自屏幕的中心向外作等速的径向扫描;另一方面通过天线传动装置,使径向扫描为同步地随天线绕垂直轴旋转,当有回波信号进入时,在相应的距离和方位上扫描线增亮,从而显示出回波,其亮度取决于回波信号的强度,近代用了积分处理器,将回波信号按不同的强度用不同的灰度或彩色显示出来。当雷达天线扫描一周时,屏幕上显示出测站周围目标的分布和回波强度。
(2)距离高度显示器(简称高显或RHI)也是天气雷达中最常用的一种显示器,用来显示垂直剖面,纵坐标是高度,横坐标为水平距离,高度坐标放大,所显示的回波在垂直方向被拉长了。
气象雷达有哪些类型?
凡是不具有多普勒性能的雷达称为非相干雷达或常规气象雷达,具有多普勒性能的雷达称为相干雷达或多普勒雷达。主要的气象雷达有:
测云雷达
是用来探测未形成降水的云层高度、厚度以及云内物理特性的雷达。其常用的波长为1.25厘米或0.86厘米。工作原理和测雨雷达相同,主要用来探测、云底的高度。如空中出现多层云时,还能测出各层的高度。由于云粒子比降水粒子小,测云雷达的工作波长较短。测云雷达只能探测云比较少的高层云和中层云。对于含水量较大的低层云,如积雨云、冰雹等,测云雷达的波束难以穿透,因而只能用测雨雷达探测。
测雨雷达
又称天气雷达,是利用雨滴、云状滴、冰晶、雪花等对电磁波的散射作用来探测大气中的降水或云中大滴的浓度、分布、移动和演变,了解天气系统的结构和特征。测雨雷达能探测台风、局部地区强风暴、冰雹、暴雨和强对流云体等,并能监视天气的变化。
测风雷达
用来探测高空不同大气层的水平风向、风速以及气压、温度、湿度等气象要素。测风雷达的探测方式一般都是利用跟踪挂在气球上的反射靶或应答器,不断对气球进行定位。根据气球单位时间内的位移,就能定出不同大气层水平风向和风速。在气球上同时挂有探空仪,遥测高空的气压、温度和湿度。
圆极化雷达
一般的气象雷达发射的是水平极化波或垂直极化波,而圆极化雷达发射的是圆极化波。雷达发射圆极化波时,球形雨滴的回波将是向相反方向旋转的圆极化波,而非球形大粒子(如冰雹)对圆极化波会引起退极化作用,利用非球形冰雹的退极化性质的回波特征,圆极化雷达可用来识别风暴中有无冰雹存在。
调频连续波雷达
它是一种探测边界层大气的雷达。有极高的距离分辨率和灵敏度,主要用来测定边界层晴空大气的波动、风和湍流(见大气边界层)。
中国有x波段雷达吗?性能怎么样?
中国目前还没有装备如美国那样安置在钻井平台式的X波段警戒雷达,但一些相关技术已经具备。
目前国产的X波段雷达主要是民用,主要是天气灾害预警:
?
——由中国兵器工业集团北方通用电子集团有限公司研制的新型天气雷达落户新疆石河子市气象局炮台气象站。这台雷达于近期投入使用后,将大大提高石河子地区夏季冰雹天气的预报能力。
这台雷达是全固态全相参双偏振多普勒天气雷达,是目前国内最先进的X波段天气雷达,也是全疆首台应用于冰雹云结构的监测及指挥人工影响天气防雹作业的监测雷达,它能实时传回监测数据。
多普勒天气雷达的重要意义
多普勒雷达是目前世界上最先进的雷达系统,有“超级千里眼”之称。相较于传统天气雷达,多普勒雷达能够监测到位于垂直地面8-12公里的高空中的对流云层的生成和变化,判断云的移动速度,其产品信息达72种,天气预报的精确度比以前将会有较大提高。1991至19年,美国在全国及海外布网的165台NEXRDA被称为天气雷达系统的典范,是目前世界上最先进的和最精确的天气雷达系统。它所用的多普勒信号处理技术和自动产生灾害性天气警报的能力无与伦比。NEXRAD可以自动形成和显示丰富多彩的天气产品,极大地提高了对超级单体、湖泊效应雪、成层雪、雷暴、降水、风切变、下击暴流、龙卷、锋面、湍流、冰雹等重大灾害性天气的监测和预报能力。对强雷暴的侦察率是96%,对龙卷的发现率是83%,对龙卷警告的平均预警时间是18分钟,而在未建NEXRDA网络之前,美国国家上述参数的平均值分别是60%,40%和2分钟。从中可以预料CINRDA将从根本上增强探测强雷暴的能力,能较早地探测到晴空下威胁航行的大气湍流和发生灾害性洪水的可能,并为水的管理决策提供极有价值的信息。新一代天气雷达系统建设是我国20世纪末21世纪初的一项气象现代化工程,在全国建成S频段和C频段雷达156部,该系统建成后,我国的气象现代化水平会上一个新的台阶。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。